## One-To-One Functions and their Inverses

What is a one-to-one function

Here is a simple example:
$f(x)=x+4$
$\left\lvert\,\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \rightarrow\left(\begin{array}{l}5 \\ 6 \\ 7\end{array}\right)\right.$
What is not a one-to one function?
$f(x)=x^{2}$
$\left\lvert\,\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right) \rightarrow\left(\begin{array}{l}1 \\ 4 \\ 4\end{array}\right)\right.$
A one-to-one function is one in which each member of the range $f(x)$ has a unique $x$ in the domain.

One way to state this is

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}
$$

The contra-positive of this statement
(Do we need to talk about what a contra-positive is?)

$$
\text { is } x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

Examples:
$f(x)=A x+B$
Let's prove this one
Assume $f\left(x_{1}\right)=f\left(x_{2}\right)$
Then: $A x_{1}+B=A x_{2}+B$
Subtract $B$ from both sides

$$
A x_{1}=A x_{2}
$$

Divide both sides by $A$
$x_{1}=x_{2}$
So we've proved this is a one-to-one function!

Another well known one-to-one function is

$$
f(x)=x^{3}
$$



But as we saw before
$f(x)=x^{2}$ is not.


Is there an obvious way we can tell from this diagram?


Note that a horizontal line intersecting two points shows that this is NOT a one-to-one function.

This is called the Horizontal Line Test.

It sometimes is possible to make a function that is not one-to-one a one-to-one function by carefully restricting it's Domain.

Here's how to do it with $f(x)=x^{2}$

Make the Domain $=[0, \infty)$
Now the graph looks like this:


And it passes the horizontal line test.

## Inverse Functions

One very important feature of a one-to-one function is that it has an inverse.
If we have a function $f(x)$ we write it's inverse as $f^{-1}(x)$.

Do not confuse this with $(f(x))^{-1}=\frac{1}{f(x)}$

An inverse function takes elements of the range of a function back to the element of the domain that they came from:
$x \rightarrow f(x) \rightarrow x$
$\left\lvert\,\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \rightarrow\left(\begin{array}{l}5 \\ 6 \\ 7\end{array}\right) \rightarrow\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right.$

A formal definition of an inverse:
If $f(x)$ is one-to-one and has domain $A$ and range $B$ then its inverse $f^{-1}(x)$ has domain $B$ and range $A$ and

$$
f^{-1}(y)=x \text { if and only if } f(x)=y
$$

## Example:

$f(x)=2 x+6$
To find the inverse reverse $x$ and $y$ and solve for $y$.
$y=2 x+6$
$x=2 y+6$
$2 y=-x-6$
$y=-\frac{1}{2} x-3$
so
$f^{-1}(x)=-\frac{1}{2} x-3$
Try it out
$f(0)=2 \cdot 0+6=6$
$f^{-1}(6)=-\frac{1}{2} \cdot 6-6=0$

Example:
$f(x)=x^{2} \quad$ Domain $=[0, \infty)$
To find the inverse reverse $x$ and $y$ and solve for $y$.

$$
\begin{aligned}
& y=x^{2} \\
& x=y^{2} \\
& y=\sqrt{x}
\end{aligned}
$$

so
$f^{-1}(x)=\sqrt{x}$

Let's take a look at the graph of a function and it's inverse


Notice that the two functions are a reflection of each other across the line $y=x$.
If you think about how we found the inverse, by switching $x$ and $y$ this makes a lot of sense.

## Important Properties of a function and its inverse:

If you have a function $f(x)$ and its inverse $f^{-1}(x)$
for each $x$ in the Domain of $f$
$f^{-1}(f(x))=x$
Also for each $x$ in the Range of $f$
$f\left(f^{-1}(x)\right)=x$

